New quantum spin Hall insulator in two-dimensional MoS2 with periodically distributed pores.
نویسندگان
چکیده
MoS2, one of the transition metal dichalcogenides (TMDs), has gained a lot of attention due to its excellent semiconductor characteristics and potential applications. Here, based on density functional theory methods, we predict a novel 2D QSH insulator in the porous allotrope of monolayer MoS2 (g-MoS2), consisting of MoS2 squares and hexagons. g-MoS2 has a nontrivial gap as large as 109 meV, comparable with previously reported 1T'-MoS2 (80 meV) and so-MoS2 (25 meV). We demonstrate that the origin of the 2D QSH effect in g-MoS2 originates from the pure d-d band inversion, different from the conventional band inversion between s-p, p-p or d-p orbitals. The new polymorph greatly enriches the TMD family and its stabilities are confirmed using phonon spectrum analysis. In particular, its porous structure endows it with the potential for efficient gas separation and energy storage applications.
منابع مشابه
Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase
Phase transitions between the quantum spin Hall and the insulator phases in three dimensions are studied. We find that in inversion-asymmetric systems there appears a gapless phase between the quantum spin Hall and insulator phases in three dimensions, which is in contrast with the two-dimensional case. Existence of this gapless phase stems from a topological nature of gapless points (diabolica...
متن کاملAnomalous Hall response in two-dimensional topological insulators due to the Stark effect
It is shown that the presence of matrix dipole moments induced by external electric fields can modify the Hall response in two-dimensional topological insulators. In the case of the quantum anomalous Hall effect the induced transverse currents acquire an extra term, being proportional to the Hall conductance and the time derivative of the applied electric field. In the case of the quantum spin ...
متن کاملColloquium: Topological Insulators
Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducted states on their edge or surface. These states are possible due to the combination of spinorbit interactions and time-reversal symmetry. The two-dimensional (2D) topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hal...
متن کاملQuantum spin Hall insulators in centrosymmetric thin films composed from topologically trivial BiTeI trilayers
The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a break- through in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show th...
متن کاملTwo-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe
Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 9 شماره
صفحات -
تاریخ انتشار 2016